Second adjointness for tempered admissible representations of a real group

نویسندگان

چکیده

We study second adjointness in the context of tempered admissible representations a real reductive group. Compared to recent result Crisp and Higson, this generalizes from SL2 general group, but specializes only considering representations. also discuss Casselman’s canonical pairing context, relation Bernstein morphisms. Additionally, we take opportunity some relevant functors their relations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation of Outer Representations of Galois Group

To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...

متن کامل

Tempered Representations and Nilpotent Orbits

Given a nilpotent orbit O of a real, reductive algebraic group, a necessary condition is given for the existence of a tempered representation π such that O occurs in the wave front cycle of π. The coefficients of the wave front cycle of a tempered representation are expressed in terms of volumes of precompact submanifolds of an affine space.

متن کامل

Admissible Representations of Probability Measures

In a recent paper, probabilistic processes are used to generate Borel probability measures on topological spaces X that are equipped with a representation in the sense of Type-2 Theory of Effectivity. This gives rise to a natural representation of the set M(X) of Borel probability measures on X. We compare this representation to a canonically constructed representation which encodes a Borel pro...

متن کامل

Duality for Admissible Locally Analytic Representations

We study the problem of constructing a contragredient functor on the category of admissible locally analytic representations of p-adic analytic group G. A naive contragredient does not exist. As a best approximation, we construct an involutive “duality” functor from the bounded derived category of modules over the distribution algebra of G with coadmissible cohomology to itself. on the subcateg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2021

ISSN: ['1565-8511', '0021-2172']

DOI: https://doi.org/10.1007/s11856-021-2178-1